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SUMMARY

'The.hose.instability of a uniform, cylindrical electron beam
pinched by its sélf—magnetic fieid:and.penetrating an infinite, field-.
free; temperafe plasma is analyzed. The tenuous élegfron'beam is

" infinitely loﬁg and ié streaming thrOuéh the stationary, dense, uniiorm
- plasma at,a-nearly constant, relativistic ﬁelocity. The bean is.aésumEd'
to bg an incompressible fluid, whose behaviour is.adequately described
by the eéuatioﬁs of magnetohydrodynamics. The electfdmagnetic influence
of the plasma is accounted for crudely by a complex, scalar conduct1v1ty,
:whose phase.ls cru01al 1ﬁ determlnlng the stability of the beam—plasma
system when subgected to infinitesimal perturbations-of_the form

aq (rb 0,z,t)- 'f"';‘f'l'"'("l")'QXP“'i'"['UJt—“"""kz-"_"-"'-e'{l";'-'"""For' "'S"‘j:mp-]:i-c:i:t'y—--t—h—é--—-d-i—s—cu—s—s-i—on—-

is, COnflned to the 1ong-wavelength reglon when kro << 1, and to the

'low-frequency reglon when ® << kv o’ |w - kv << wB and N << 1,
: : w4+ w :

'By u51ng the gump-condltlons of magnetohydrodynamlcs, MaXWeRl s gquatlons,'

and‘a normal mode. ana1y51s the.dlsper51pn equation, .

J(w - kv°)2'= wB'[l_— iﬂJ (ik.r )Hl(ik r )] Eq. (60),lls obtalned and
'its solution discﬁSéed;_ Strange to. say, the 1dent1ca1 dlsper51on equa-
tion is obtgihed_usiné qthg: entlrely“dlfferent_bgt-reasonable models
of the beam"piégﬁ;'éystém;;of gfeétef'séphisfiégtibn fhah'thg_éimple,:

‘macroscopic model used heré3[7, 8, 9].

-
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I INTRODUCTION

Consider a uniform, -cylindrical electron beam which is penetrating
. . * '
a stationary, field-free, infinite, temperate plasma at a nearly con-
stant relativistic velocity. The plasma‘s charge density is assumed to .

be so much higher than the beam s charge den51ty that qua31 charge

iineutrality is preserved at all times The pinch magnetic field of the

beam is deemed important in determining its behaviour,'and in the
equilibrium state it is sufficient to hold the beam together against
its'random, transverse kinetic'energy and multiple scattering effects

in the plasma. The eqﬁilibrium cenfiguration of the beam is invariant

~to translations in the z direction, the direction of the beam motiomn,

and the cylindrieal beam surfaCe, where the electrons undergo infinitesimal

transverse displaeements,_rl, is defined by

M

r=r + 1"1(_1',_9,2,1:) L K o (L

It r and all other perturbed quantities, ql(r;e,z,t), are Fourier

analyzed so that

ql(r_,e,_z_,-t) = Rcfl(r)exp ifwt - k’z '_— mo ] ’ | o (2)

it follows from the stationary, eylindrically symmetric nature of”the

-unperturbed systeém and the system of 11near differential equations ob-'*

tained follow1ng the usual linearization process in which the products

Following Allis and Buchsbaum (1, p. 18], we shall define a temperate

: rlasma as a plasma whose induced, thermal, and phase veloc1t1es satisfy

the 1nequality - . _
< Y << =w/k .

_ V VT Vbh /k

Except at resonances,-most plasmas are. temperate.



of two or more'perturbation quantities'are'neglected, thatfeach component

. characterized by the parameters m, k, ® is decoupled from the rest.

0f the numerous different kinds of instabilities which can disrupt
this beam-plasma system, we will concern ourselves only with the so-
Qalled transverse instabilities. It is easily shown that the sausage

or-m = 0 mode causes harmonic variation of the beam radius with distance

.along the axis and with time. This.azimuthaily éymmetric pulsation of

the beam is phased in such a manner that the induced plasma currents
exert forces on the bean eleétrons in such a direction and phase as to

feed the pulsation. The hose or'm = 1 mode represents a transverse dis-

LS

" placement of the beam_with the'induced plasma currents again'contributing_.

to the instability. Higher values of m are more difficult to picture

_'andIWill not concern us. They are not different in principle from the

'm = 1 mode, to which we will comfine this discussion.

To analyze the stability of the beam-plasma system, we must express

the perturbed electromagnetic'field véctors in terms of the perturbed

.volume and sﬁrface éurrents_of the beam,.the plasma currents;.aﬁd.the'

. steady_state'pargmeters éuéh és fhe.beam rédius; Beam vé;ocity,‘and_

fplasma frequenciés. It is asSumed that the electrons-and ions of thé

_qully 1onlzed températe plasma obey a 51mple llneaflzéd equatlﬁn of
.'_motlonwln the perturbed-electrlc field with a frlctlon term dependlng on

the relatlve,electron—ion motion. TQ keep the analysis within_reasonable o

bdunds, collisions between like particles, magnetic forces, and thermal

- effecté in‘the-plasma are all negiected.:.Collisions befween the electron.

beam and the plasma are proportlonal to the beam current, and for a weak

'._beam the neglect of such colllslons is JuStlfled _ The tenuous,'relatiViStic_

e



R W

ft o beam is assumed to be adéquately described by the linearized equations

of magnetohydrodynamics'(MHD). Instead of the usual adiabatic law,

“%

[
m
=

=X
p

as the equation of State'for'the:beam, we shall simplify-the algebra :

greatly with the much less ﬁalid_incompressible-flow assumption thaf '

Lov. 520 (@)

~or % ~ infinity. We shall rétionalize this bald assumption by argﬁing
that the incompressible flow is a possible mode of motion for a com-
pressible fluid so that an instability found for an incompressible fluid

is a possibie_instability for the more realistic compressible system.

: _By'integratihg'Makwell's'équations and the equations of MHD across the

I

boaﬁ—plasma intersufface, which is_aésuﬁed_folbe ; Shafp boundary?;the,
so—colled jumpfconditions will be ootained.ftBy:requirihg that tﬁose
_ juﬁo-oondifions be satiéfied, the dispersioo eouation,_Ed; tGO), valid
rfof iow ffequencies and-long_waveloogth,.will emorgo..'A_brief analyois'
':iof.fﬁe diSbersioo oouation concludes.the feport. Defihitioné of the
| imore important syﬁbols are glvon 1n the glossary located at - the end of
" the report.. The MKS system of unlts 1s used throughout
11 PLASHA DYNAMICS |
Wlth the assumptlons otated in tho Introductlon,.tﬁe oortlcies of

;:}"']-_ : "the temperate plasma con51st1ng of electrons of mass m and ions of mass M, :

“Which are*at rest in equilibrium'with densities n0 and_No”respeotively,




obey Newton's equation of motion { 2, p. 750] B B

n N_mt ) RN =
(V- vy © (5)

nm+ NM e . i’
o ol . -

Ciwn mv = = n eg -V
e e [ .

n N _ . o o
A

i MV = "¢E v-—-—-“-—-——'-
@Nomvi NOEE f_ _nom + NOM

.where V is-.an averaged ve1001ty 1ndependent electron—ion-eollision fre-

quency. In wrltlng these equatlons we have tacitly used the fact that

the pfasma is infinite 1n extentjand_that waves ex01ted in 1t varyras.

== ' a . o
exp i(wt - k - r)s This permlts the replacement of — 35 5 < iw-.

- The current in the plasma .-'mﬂ

_ . o _ -'_anoez : (no.__No)Zezx ) i
= ) - = . - 7
Jp . _ec‘NQvi nove) . ll»(lw + U) + iw(nom + NOM)jI E ._ 2 I8} ( )

Where u = mM/(m.+ M) is the reduced'mass.-'The COnductivity, g,fcan be

redeflned in terms of the plasma frequenc;es for the relatlve electron—
< dion motion, we,_and for the motion of electrons and ions together w

Calling

- on e o - w2 o
- : : 0O 0 Sl : '
S W = “ and . W, = : S (8Y L

ST é I 1. . T
. ' o 2 L AR .
: q T Ia'(we m - 1U fs - 1w p .;- S (9)2

-

'Assuming that theﬂbeam is weak S0 that the qua51~neutra11ty of ‘the plasma'

'_¥ is never disturbéd-due to the passage of the ‘beam through ‘the plasma,_f'




and we. can write

2
N, e . : o
Co'ett - - | |
where
. n_m +-NOM No : . 7 o
'Meff'=' N —n ~§ _ M>M . . (12):
i . o bo

Notice that the conductivity, g, is a eomplex_quantity.' ItS'phasé,r®3
is approximately
® = - arc tan (W/V) N | (13)

-

aﬁd is eritical in determining the stability of the beamelasma system..
In a fully ionized plasma, thrée t&pes of interactions.between-the

éharged particleg.are pr¢sen£: _electron-eieqtroh (vée),.91ectron—ibﬁ

évéi)’ and ion—ioﬁ (vii) interabtiohs.' Delcfd?x t3, p..lls] has.éﬁown

that they are related by:' ' o o S

! SRR 2 S -
= = = . _— = < g
V= Vey vee_ j\/;-vii = dm Yth>bo log (8/b,) » a8
- v, > = the thi loci plasma electrons = \/(3KT /m),
_where vth> the thérmal-veloplty_of the_plasmg elgctrpns = (éKTp/m),
*h i1s the Debye length, and_b0 is the averaged, critical impact parémete:j
“for a defléétioﬁ'df 90°;'bo = ez/(lzﬂédKTp), Because m/M = 1/1840 << 1, °

Cowe aré-fully.juStified-in.négleqting vii} 'Equation'(14)25hows that v .

can také~on;a large range of values by varying'no_and/or Tb'but :
in such a Way that we are_always'dealihg with a non-relativistic,
- .classical plasma. After_speciinng the'beém.equilibrium'parameters, ; '

'_and.by'varying v, it will be shown that the-dispersion'equation;::*




e ——— J T

; équivalently'és o

Eq. (60),'can-have complex roots with negative imaginafy parts,  In other
words, for certain values of ¥V, the beam~plasma system is unstable.
-I1I1 - BEAM DYNAMICS
The behaviour of the uniform, cylindrical electron beam is best
described in cylindrical coordinates with the positive =z axis parallel
~to the gross beam vélocity. .We will assume that within the beam, where-
1

r= 'ro'+'f3, the following,equations.éfe'satisfied:

2LV (W) = 0, o as

Vv = 0 . '_ . 16)

o
=N

Qn.

U,z
ot
i
UZ
L)
o/
&
-
<1
<]
~
o
n
1
]
o
=1
+
L
&
1
<7
-

" where. J = - N e;,~ 5 = ym@, v o= (18)

2 R
J(m ¢ 4+ D)
Additionailyl Maxwell's equations are valid, and for the beam~plasma
systemrthey'gan be simplified to:

—

V-E = 0, . .19y -V

Wi
|1

0, @

|
o
=N

(21) ¥ g B

|

‘V xE = -

o/
o+

#Oy eIy @

- Some brief remarks ébeut'the validity of Eqs)-(lS)-(gz) may be '

- helpful. Equation (16) states that thé.electfoﬁ'fluid is.incompressibie}

With the aid of the equation of continuity, Eq. (15), it can be written

dat. =

6

4 o e



. Aithough an ihcompressible fluid is only a convenient fiétion of the 
theoreticiap which.pe¥mits him to obtain simple results; and its_exiétence
violateé well—establishéd physical laws, we ﬁave justified the use of

.-Eq. (16) by the remarks following Eq} (4). The use of Laplace'’s. equation,.
q. (19), in place of Poisson's equation, is justified by the.argﬁment

that

1. 0
W o w
l_vo‘i-'k” C+E

for v1/c << 1, and vl/(WXk) << 1lina temperate plasma. In Ampere's

It
=]

1
=]
S
0

1l

vy _ : '
E?'po =0 , (24)

Law, Eq. (21), we have neglected the displacement current relative to’

- the conduction current, for
Tais, | | %" | o?

| <2
(O’p + cb)E

{m +m )|

: 5 (25)

cond.l : :

at the low frequencies which intereSt us. - (In the abﬁve, unpérturbéd.
quantltles are deﬁoted by . the subscrlpt zZero and.perturbed quantltles-
by the subscrlpt ong.- Thus v = v + vl with v /v <«<< 1. )

Call n the outward directed unit normal at the beam surface._ It

‘can be shown that n satisfies the followingzéquation.[4, p. 70-73]:

_d__—

5t ‘n X [n X (Vv) ? nj -.;.  *._j.. ..7(26)"

"Integrating Eqs.a(lﬁ) (17) and (19) (22) across the beam~p1asma
1ntersurface, which is assumed to be a sharp boundary, the f0110w1ng :

.Jump—condltlons_are obtalned: -

A



[ o x @ ez -ale] = o, - Qe

(193)

=1
—
=E
et
u
o

{20a)

51

. ~—
™%
Lot
o
o

(21a)

ot
B
’ rm
B >4 |
f —]
il
o

. . ) o ro+€ . :
" : = - ' >0
o | o oomxDl =3 =] @ edpar, e>0 0 (222)

]

where

. [r] = p+ -  P = .?(ro + e)-_-— ,p'(ro' - e, e/ro <<<_:.1, . (27):'.

8]

- B = B(r_+ €) -B(r_ -¢), e/r <<1I,

R
"‘w:

It

=t
= .
i

_ = , <1
CE(r_ +€) - E(r - €), .q/ro.<<..} _

Fﬁrther'progrgss is possible ohly if the above equétions are

linearized. If q{r,0,z,t) is any quantity of interest, we Shall make

the._basic-:'éssumptidn th.z.ﬂ:. (r,8,2,t) = qo(r,e,'z) l;gi: qo"f...gc?l(r)fa:xp:__i[wt -
ks - e],,Eg.'(z), wh¢re'§0 is the equilibrium ﬁalﬁejof q”and a, ;s'thé."
'-1 pgrtufbeq #élué witﬁ |q1/q0f <<% 1, . | R .
é€$4We*firstfgxploit the fact_that the é Velocity of-the.beam is_épproxi-
mafelyrgqnsténtignd_that ibais-much largér than the.trénsvefse veibcitf;
.. ;i...Liﬁegriziﬁg.EqL (;7ifwe.get,. | |

e U S ap R
Nbomfyo -d_t_:-'vrr_ = erOEr + .(Jbo _.x B)r . -81_-- R €28a)




dp

o4 | — = X |
. Nbom’Yo "E Ve = - eroEe + (Jbo K B)e T g y . (ZBb)
3d . dp | R
Ny ™Y, qg Yy = eN, Ez el A l‘(28¢)
o . . . e .
" where
SR -
dat -3t T Yo 3z
: _1 _ :
) o= (1 = v2/02) ? ‘and J, = - N eve . {29)
To o y b, T b ~oz

A simple.applicatioh offAmpere's_Law, Eq.(22), yields the equation’

- _ qubor__ S
= = '
BO 5 _ee? r r, .(30)
: 2
' quboro _
= —'e , rar .
2r e . o

There is no static_electrié field, Eo.z 0, and Eq. (17) requires that

ap
)

Jb Bo + ~3r = _ =T,
o : : :

Using Eqs. (29) and (30), we find that
S SRR N
Mt

o.(ri._ ??};_  .  :{:-  g _.-  (3;)

'.PQ: 2

.The_other'eduilibrium values are obvibus. :They'are

=t
[H
[
[}]
[}
H
-3
j=1
It
[¢1]
Ll
1l

:yomvoaz;:'(32)'f'



i
i
]

DT .

~where Eb
o

The tofal_beam current consists of three terms,

- . - * . . R
Jb = Jbo + Jbv_+ Jb §(r - ro), . (33).

=" er Yotz Jb
o v

the perturbed surface current arising mainly from the slight fadial

. : C x
.is the perturbed volume current, and Jb_is

movement of the electrons at the beam's surface which are.bodily trans-

porfed in the z direction at Velocity vo. ConSistent with our néglect

of surface charge densities [the repiacement“of Poisson’s_équation by

.Laplage's equation, Eq. (19) ] We.shall.assume that Eb '= 0. Considering

i : v
the genesis of-Jb_it is reasonable to expect that
7= c.J exp itwt - kz - ng - | (34)
b To'b z' .

whqre cO is a constant.
.Linearizing Egs. (16), (19)—(22L and the jump conditions:(16a)~(22a),_

we get

Vv = 0,,.  (16a) - V-E = 0, : (19a)
o= o o= 3B
B = O, _ (20&). VXE = T3t ' -(21a) -
(= By 0B+ 3y 8(x ro)_j-,-;- SRR ¢ a)
p S e o . .' SRR
€. "V +mn v .= 0, (16a ). L
J-* - .‘t- - 5 . o
S Bo(§. r =1r ) - e P = . _(17a ) o

3 .1.0 .



T ;’; Er ’ [E] = 0, . .(1931.) - E'_|:- ) [ﬁj = 0, (203”)
; : - . ?r x [E] = lO,-_ (21a") .:er x [B] = Jb . ..(22a')
f: In obtaining the above equations, we have used Eqs. (7) and (30)-(32), and,
' to avoid the troublesome practice of putting the subscript one on perturbed
-quantities,have omitted them entirely so that henceforth:all'quantities
. Without sﬁbscripts‘aré;perturbed'quantities.
" IV SOLUTION OF THE WAVE EQUATION FOR E
- Our stability analysis has been resolved to the solution of the.wave:
.,; S ‘equation for B,
= e = - Lk o *
f v X'(er E) + ip woE = - 1uowa 6(r -~ r)) , - - (35)
H X B | .
ay e :  which satlsfles the boundary condltlons Eq (lsa) (22a'), and with all_
; perturbed quantltles glven by Eq. (2). ,Let: o ..' 
: ?_ E = &(r)'ekp ifwt - kz = 0). . (38)
i  Written in component form, Eq. (35) is [5, p. 116].
E : - o SR . o
e : B R P [r dr (r ¢ Y - = ¢ } + (k + k )¢ 4 1k-—— ¢ =  0,. (3?)
: . d [l a 2.2 koo -
3 d“. 1 d 1 27, .
. [ 2T dr 2 kd]wz b [r dr . ( ¢ ) *7 * } ,
i dr-r_'___ o _ TR
' ' (39)

1u c wJ 5(r -r )

11




—

where

ki = ipWwo = i(skin-depth) = . - (40}

The solution of these coupled differential equations for @,(37-39)?

is too difficult a task, so we will solve them in the 1onghwave1ength_

approximation whén~krO << 1, In.the.long—wavelength'limit, Eqs.

(37)-(39) simplify to

: oirrd oL . i 2 R |
. | ) 7 [.;_ i (rq;e) - q;r] + ko q:rl = 0, o (37a)_._
-~ dr [; E?'(r¢e) T r ll’r]."' ¥o we =% - (SSa)
2 J '6(r - r)
d l d 1 2 . o
[——w—é —I-: -a—r- - -—é- - ko] 'qu = 1} COI' o - (393)
dr r o

Notice that Eqs. (37&) and {38a) do not involve ¢Z but only ¢r

and @9, and that Eq. (39a) is an.equation for ¢Z_aione. The bonus of

our k = 0 assumption is that we have partially_decoupled these differen-
© tial equations.f A.laborious calculation shows that the ooly pfoper
) soiutions of-EQS.f(37a) and.(38a)'whichréatiéfy‘thé_boundary_COnditions_ S

The - homogeneous solutlon of Eq (39&) 1s the cyllndrlcal (Bessel)

,'funct1on Z) (1k T) [6, P 146] For the partlcular solutlon we
”Lappeal to the theory of Green s funotlons [5 Chapter 7, eSP301311Y'

. pages 826 ff ] and flnd that in the reglon r S ro,_'

-"12




% e | i, | ) _ “ . _

. : -0 . . <

: ¢z(r) 2 uocorowaoHl(1koro)Jl(1kor) - T2 (42)

i ‘where Hi(z) and Jl{z} are Hankel functions of the first kind and Bessel
: functions'df order unity reépectively.

With ¢z(r) given by Eq. (42), Eqs. (36) and (21a) can be written
'out-expliqitly as
. E = ¥, exp ifwt - kz - 9] Ez' 5 (43)
= i = i i - d l;'z.'- ' L |

:é B==-VxE-= z [E - wz er_+ & %% exp i[wt - k? —_9]

ki 1| o i} - 5

? =5l - koJo(lkor)/Jl(lkor) + = s _ﬁz(r) exp 1[wt.f kz - elnf.
L V- DERIVATION OF THE DISPERSION EQUATION A
N _ : ' ' ' S

f mfb' +  To obtain the dispersion equation, we simply insert Egqs. {(43) and
: (44)'iﬁto Eqs.'(28a,.b, ¢) and pick'out'the solution:Which-satisfies
.i'i'.”'_-' _the jump-conditions. 1In particular, Satiéfyigg Eq. (17a') will yield

% 'the-disperéion-equation, Eq; (60). Performing the indicated substitu-
é ‘tions we get'

o o L deé(ik‘or)-. _'i Jbb?"z a? .

:‘ o i(w - = (=290 . 9 .2 - a4
A kv N, YV, =TGR T H e T o @
L L . Jbo\hz s o
B - N, myv = o=+ 3, )

1/‘--.\“.

o
13 .



: . 3 | oy
i(w - kYO)Nbomyo v, - eN. *z + ikP .
. To solve these equations, we copy a trick usedby Mjolsness [

p 31] and argue that as v /v << 1, the exact r dependence of v

47)

7,

2 is unimpor-

:tant. If we replace Eq. (47) by
Jbokxllz - o
3 _ . . - . 48) .
. i(w kvo)_Nbomyovz . ~ + ikP , (48)
‘then Eqs. (45),(46), and (47) are componenté of the wvector equation'.
o . ~ i . o . '
1w kyo)Nbomyov = - Jb0 V[¢zexp ;(@t kz - 8)] - V[P(r)exp }‘mt_ kz - 8)].
(49)
‘Equation (49) relates v and P(r), both unknown quantifies; A little
' study of it suggésts the ansatz
; = Y[R(r) exp i(wt - kz - 8) ] (50)
. and inserting Eq. (50) into Eq. (49), we learn that =
. WSS e 3 4 (e
= iw ‘r) f_Jbo'wz(r)_' _
R(r) = — (51)
S _Nbo‘{omw(w- - kv o

' To obtain_R(r)} we invoke the incompressibility condition, Eg. (16),

T e R et - kn- 0] = 0,

.14

S



P

g :

:J \ or

dz. 1 d 1 2\

: e . _ = ) < . .

; 5 * T 3r o k ER(r) 0 4] rs r (52)

5 dr T ' : :

%_ Thg'modified Bessel functions of the first and second kind, Il(kr) and Kl(kr),

satisfy Eq. (52), so
; R(Y) = 2A1, (kr) + BK,(kr) ,
| where A and B are.arbitréry constants. As R(O) is'finife, we must put
B = O. Recall that we are conflnlng ourselves to the long—wavelength

E Vllmlt 50 that kr <<< 1, and for small arguments I (kr) < kr/2. Thus an

fig_ o approximate solut1on of Eq. (52) which satisfies the boundary conditions
is

D I L 0 R(¥) = Akr . kr<< 1., . (53) .
-15 S . Putting Eq. (53) into Eq. (50), we get

vV o= Ak(ér - iée -_1kr'éz).¢exp i(wt - kz - 8) . (54)

'Putting Egs. (42). and (53)'into-Eq. {51) and solving for f(r),-we get
: a P(r). 5 Ei'r. v J2 ﬁl(;k .)'. _g . k ' ; 3 ess
AT T 2 IJ'0?00 bo 1 }'QrQ J1(1 or) B 1A:rNboY0m(w.fj vo)' ; )

e ' Linearizing Eq. (26) With the aid of Eqs. (32), (54), and the

f' vector equation (Vv) f-;r = 'er; we get

w-kvon o= i ks e

15




' Insertlng this last result and Eq. (54) into the Jump-conditlon Eq.

(16a'), a constraint on the frequency, w, emerges. .Performlng the"'

'above'substltutions, we find that

W
e[
iTw - kvo

= 0. . (s7)

-As Ak £ 0, to satisfy Eq. (57), we must require that inequalities

[wf <<< Ikv;l; | :...-' (58)

and Eq. (25) serve as definitions of ‘what we mean by low frequency.

The arbitrary constants c, and A appearing in Eqgs. (34), (54), and

(55) are related by the fact that there is a connection between Jb and

_ v, the perturbed beam velocity Appeallng to the fact that the beam must

-move w1th 1ts surface, we get the de51red relatlonshlp,_

A = icd(w"kvo)_/k_-: . (59)

Finally, upon substituting Egs. (55) and (59) 1nto Eq {17a'), We

-get the d951red dxsper51on equatlon for hose 1nstab111ty,

R 2 3. "ﬂ; o :'.e* ‘ 3
- kv )™ = w [1- ing, (ik r OH (ik r )] o . (60)
.2 4 3 2 o
S = 2 - o - ] o { 0
- where QB = = s
'_.Zyom.- :__-7_2€°y0m Vot




VI ANALYSIS OF'THE DISPERSION'EQUATION

It is important tc remember that Eq. (60) is valid only for low

frequenc1es and - for long wavelengths - The equation was obtalned

under the assumptions that'the displacement cﬁrrent is negligible com-

‘pared to the conduction current, Eq. (25), that the phase velocity of )

" the wave'is much'less than the beam velocity which is high1y~relativis-

tlc Eq (58), and that the wavelength of the’ dlsturbance is much longer

than "the beam radlus, kr << 1.

As indicated éarlier, in solving the dispersion equation we will

'spécify the wave number, k, and assume that it is real. The wave fre-
7quency, w, will be expressed as a function-cf k and the other paramefers
‘of the beam-piasma system. . With the time-development of the-system of the

- form eXp iwt, 1nstab111ty is 1nd1cated by complex w's w1th negatlve

]

'imagicary parts.. Phy51cally, ‘the 1nstab111ty is due to the drag exerted
 'cn the beam by the currents lnduced in the . plasma, Wthh oppose the mo-
:'tlonrof the_llnes of force of the pinch f;eld.:'Thls drag is in the same

'direction asithe'mean transverse'velccity cf the becm ciecrronc.and.re-_

‘sults in an exponential growth of the oscillations..

In_most'plasmas,_lwi/wé}.<<.1 cnd_Eq.-(Q) can be épproximated by.ci

e W . : e w o . S
SRR A T e
e e o |
where '
- % £ ® = - arc tan %35 0 .: (62) .-
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The_soiurien of_Eq..(GO) for arbitrary values of.the paramerere
 15 only possible with the aid of a computer. _We shell give a pdor man's__
discussion.of the solutroﬁ by confining.ourselves t0'the followipg
'_special conditions:. (a) a collisionlese.plasﬁa '®f= —1/2' (b) the _
rth1n—beam case when.the skln deptﬁ is- much greater than the beam radlus,
zlk r | << 1; (c)_the thick-beam case when.the skin-depth rs much less

" than the beam radius,'lkdrol'>> 1.

'h;_ A Collisionless Plaema o

In the complete absence of COllisions in the plasma, ¥ = 0, and
“.; koro = _werb/c is a redl_positive quantity, independent of w.  For real
‘& it.is most”convenieﬁt to. express therBessel and Hankel functions of

purely 1mag1nary argument in terms of the modlfled Bessel functions

1(z) and K (z) According tO'McLachlan'fll]

r

9 = iu'l(.z') n;(iz)'_ - - %Kl(z), .r.ea.l.z, (63

‘and putting Eq. (63)'into Eq. (60}, the-dispersion-eQuation becdmes_:

Lo : _J_., » "
W o= kv+[1-2}: (kr)K (kr)]2 - (64).
-.When kero << 1? _Il(koro) =_koro/2’. o Kl(korb)_= l/(korq), -
'fl-and when k r0 S 1 S ' S ' 5 5
o | (k r ) =..exp (koro)/[ZHROrOJ_,-
f_-(ss)_f ;5'”

i 5 e s B
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By consulting tables of Il(x) and Kl(xL such as page 1925 of Morse and
Feshbach [Sl,and pages 237-242 of Jahnke and Emde [Gl it is readily
ifi ) - = .. e =
._verlfled that_for real korof 1 211(k0r0)K1(k°r0) : ) _Hence Im w: o,
and the conclusion'is that in the absence of collisions the beam-plasma
- system is étable.. As a collisionless plaéma does not exist in nature,
~ we do not attach muéh significanﬁe to this prediction.
B. A ':I‘hin Beam
”In.a thin beam,

" “_'wero
: 0’0o’ = ¢

| Lo (w - iv_)]%]"« 1. ... (eB)
The solution of the dispersion equation in this approximation is still )
difficult and for that reason we will also_aésume'that we are dealing -

with a collision-dominated plasma when le << V. Let

S wero 1, o L S . -
= - v]®: i AR S B
k.o s _[w/.] exp 13/4 R 1(67)
. For_sma11 arguments [ll}i.
- Jl(lkoro):.? 1k9r0/2_ . i :'} .:(68)
L . ki ri - _I o
j"ch;koro);-? T xk r S 2 zn' (kor°)| T
N oo - 7 ST
- and the diSpe?sion_equation_becomeSQ'f '
@- kvt = = | o= te 0 (69)
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ooy - where -

2 .
Wwr w : ;
‘n l(koro)l... o (70)

- With Bg. (B7) holding, (2 depends logarithmically on w and can be assumed .

'to_be a constant in the first appfoximation. Equation (69) can'be_writtén.
.(w'— kv )2 —'iQ(¢ ~ kv )'— iQkv ..= 0. ' ‘ (71).
- Tet o o T _ :

or . L . o : _ .
W = kv 4 i [0+ ° - 4ika -)%] . | (72)
o 2 B o AP -
When kvé << 3, we mé} expand the radical in Eq. (72) by usingt
“the binomial theorem. Of the two roots, 6ne igs unstable, Im w < 0, and

satiSfiés the low—fréquency condition, Eq. (58), also. It is.

v “,._ 1:2k3v03 _ikzvi . _ o S B
' W == — - sy kv Q<< 1, |w| <KV ., - (73)
: 92 _ Q ; o S _

i -~ For these waves, the e-folding time is Q/(kvo)'.
‘In the opposite limit when kv >>10,a similar_expansion_shows .

“that there is'an_unstable'root:_

o s kv - J@ND - i@ D), kv Q1. (78

. As this root does not. satisfy the condition [w|-<<rkvo,it is not an

écceptabie éolufion and is to be rejected.

C. _.A'Thick'Beam'j.'

" In a thick beam,

=A@ -wI>»>1. o (7s)

Ckr =
oo o
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. For such large arguments we may use the asymptotic expan51ons of the.

Bessel functlons [11]

. . i . .
Jl(lkoro)_ = Py exp kor.0 .
: o o S
(76)
'. ﬁ.(ik r ) = 2 ] exp -(k r )
1Moo rk r J oo
L . o o :
insarting Eq. (76) into Eq.'(60), thé_dispersion equation becomes;
| 2 3 1 o o
{w ) kVo) = (.UB [l - -E—}:J i o _ (77)

0
with koro given by Eq. (75). Equation (77).canfbe solved by the standard -
‘iterative procedure. _In the first approkimatibn, its éolution is

(1) o —
o, = kv oxa S T (78)

: Putfing W, into Eq. (75).we-gét an estimate of (koro)_l, which we

shall call ¢ . In the'next approximation,-

. i y o :_
W == * - e : . . 79)
2T Morugli-e2l
“~._HOWever, tHis iterative process isﬂmeaningless_thSicélly,
because the macroscoplc ana1y51s whlch led to Eq (60) tac1tly assumes L
that the beam electrons are 1nfluenced by the qua51 statlc electromagnetlc

fleld durlng the couzse of one betatron 050111at10n QB ' In other words

the Doppler—shlfted frequency:w - kvo,satlsfles the 1nequallty,
o kvo. Wy L P 7(8 ) .
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As the roots of Egq. (77) do not satisfy this condition, we must reject

them and attach no physical significance to them.
VII DISCUSSION

The hose 1nstab111ty of a f1n1te,-relat1v1st1c beam penetratlng a

.plasma has been studied by other: phy5101sts u51ng dlfferent but reasonable

models of the beam-plasma system. Apparently,-the dispersion equation is

not very sensitive to the model used, for they obtained the identical

_disﬁersion equation, Eg, (60), "The earliest of these known to the author_
is by G. Ascoli [9], who credits_the_heuristic and strongly physical deri—_
‘vation he gives, to C. Lomgmire, M. Rosenbluth, and N. Christofilos. Ex-.

~.cept for slight differences in notation, Ascoli's Eq. (37) on page 30 is -

identical to our Eq. (60). Additionally, he also gives a_discussion of

_sausage instability,.the m = 0 mode.~ Readers lacking AscOli's'strong

::phy51ca1 1ntu1t10n will flnd his paper somewhat hard to follow. It is

- In a pellucld paper, S. Weinberg_[S] has -derived and analyzed the dis~

per51on equation_for hose instability-of a finite beam ab initio. Although

) he used a sllghtly dlfferent model from the one employed here, he obtalned

the 1dent1cal dlsper51on equatlon and arrlved at the same conclu51ons.

'Welnberg s paper should be read in congunctlon w1th a. paper by Rosenbluth

[10] which is rather dlfflcult to understand because of the host of

approx1mat10ns made-to omat'terms'which were'supposed to be small _ Where-
‘as. Rosenbluth attempted to treat the beam dynamlcs by sclv1ng the relatl-

_ v1stic VlaSOV Equatlon Welnberg 51mp1y used Newton s Second Law of Motxon.

ThlS 51mp11f1es the treatment greatly and makes the f1na1 conclu51on much g

" more- plausible..
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In a long and skillfully written technical report deserving of much

careful study, Mjolsness [7] has studied the stability of a relativistic

ﬁarticle beam passing through_a plaema. ‘In Chapter II, he analyzes the

hose instability in a much more detailed and convincing manner than

- Ascoli did, and the dispersion equation which he obtains, his Eq. (90), .
" is identical with'our_Eq.'(GO). Besides using a model which is essen-

fially the same as the one used here, he also derives the identical dis-

persion equation by following a technique employed by Rosenbluth in

studying_the same problem L10]. ~Defining a.as the local surface dis-

placement vector at the beam surface, he obtains the dispersion equation

by integrating the_a component of the'mohentum equation over a beam

cross - section. By invoking a weak assumption on the pressure‘tensor,

_his Eq. (108) [recall that we assumed that the pressure was a scalar;

Eqé. (31) and (55)] he obtalned the dlsper51on equatlon

In an accurate ana1y51s of tlis problem the beam and the plasma
should both be treated m1croscoplca11y . The mathematical difficulties

encountered in such an ambltlous program are insuperable As a compro*

mise, MJolsness has glven a microscopic - analy51s of the beam and treated

..ethe plasma macroscoplcally. Sp901fica11y, he-has solved'the-collisionlesa
F-:Boltzmann equatlon for the beam and treated the.plasma as an. ohmlc medlaﬁl'
' with a- tensor conduct1v1ty The vertlglnous.details are éiren in;Chapters'
”:4-and 5 of Mjolsness's repbrt'and interested readers are referred te it

':for details. .~
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GLOSSARY

an arbitrary constant, Eqs. (53) and (59). [A] = £°t

used as a subscript, b means beam

-

magnetic induction

speed of light:in a vacuum, 3 x lds-m/eec-
a constant,:Eq.'(34). coeis a lengﬁh.
megnitude of the elecfron charge .
unit.vector‘in the r direction

unit vector in the z direction '

electric field

Debye length of plasma electrons, h = [eopr/(noe )]?

imaginary unit,'i2'= -1

current
:surfaee current at.the beam-plasma interface,'Eq..(22a)_'
'.propagation vector, k = 2xn/y, k is a real quantity

k ;_ei“/4'[uo¢U]% = o' [skin-deptn]™!

[}

,Boltzmann‘s constant
electron rest mass, mode number in a normal.mode ena1y51s Eqi
'f-.'loﬁnrest mass
':.outward dlrected unlt normal at the beam“surfacee
.'_equlllbrlum electron number den51ty of the plesma
f equlllbrlum ion number den51ty of the plasma'}e
._ equ111br1um electron den51ty of the beam .
Cused as a subscrlbt P means.piasme

"ymv, llnear.momentum of beam electrons o
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,Eﬂ DR P .. scalar pressure of the bean

qlcr,e,z,t) perturbed value of the quantity q{r,9,z,t), Eq. (2)

ro ) equilibrium radius of the beam
St | " time
T : '.temperature
.F ) ..: Sy “I.:beamjelectron'yelecity, v o= v, o+ Y ;.|; /; | << 1, ;6 = voez
Y - vz/czjuﬁ, the Lorenfz factor, vy, =[1-v /c23 %, ratio
» -of spec1flc heat at constant pressure to that at constant
volume, Eq. (3) . |
, : 5(r_)' . Dirac'delta funétion, j‘ i(r)a(r)-dr = f(O). |
| e N :poeitive; infinifesimal.
| €, _permittivity of free space, 5_ = eoﬁ _
‘_m\,'. B - azimuthal aagle-in cylindrical cderdinates, X = 1rcos 8,
' ? } ’  'y'e r.sin 6. |
'; ' .® '-: phase of the plasma conduct1v1ty, Eq (13)
f%. A L '.-wavelength
i; _ i o By : :_permeability.pf free space, §'=-M ﬁ
;§  E -:7 e 1_' '-electron—lon colllslon frequency of the plasma Eq (14)
'p. :. mass den51ty of beam electrons, p = ﬁbm | ;.
: o - :. scalar conductivity of'the.plaema, Eq. (9)' k
.g ﬁ.' _'.'ﬁ . ¢(r), radial’ dependence of the electric vector, Eq (36)e
? W isa. wave frequeney, as we assume.tame dependence.exp 1wt, |
é '_Im w < o 1nd1cates 1nstab111t§ : 2a:.-] '2. .
B g e Nbovo _ ;.Nboe o Voz-
SR B _ ._QB o _betatron frequency, Wy = 2; — '=__§__“fﬁ —
g ST g me il £~ R P c
T e S g ) ' =




1 .
HI(Z)

: Il(z)

Kl(z)

%(r)

a:m:—"l, Eq- (8)

R |
0=-—=2B (kr|, £ (70)

Bessel function of order unity

Hankel function of the first kind or order unity

modified Bessel function of order umnity, Jl(iz)-=_111(z),
2z real N

o ' . . : 2
modified Bessel function of order unity, H1(1z) == Kl(z),

z real -

radial factor of ‘the pressure,

P(r,z,8) = %kr) exp i(wt - kz - 8)
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